
RobôCIn @Home Description Paper
Carlos Henrique Caloete Pena1, Heitor Rapela Medeiros1, Lucas Oliveira Maggi1,

Marvson Allan Pontes de Assis1 and Raphael Cândido Brito1

Hansenclever de Franca Bassani1, Edna Natividade da Silva Barros1

Abstract—The RoboCup@Home aims to develop ser-
vice and assistive robot technology with relevance for
future personal domestic applications. Commonly, the
RoboCup@Home tasks involve object detection and
recognition, mapping and navigation, and human inter-
action. This year is the first time that we are going to
participate in RoboCup@Home, on LARC 2018, using
our TIAGo from PAL Robotics and we are searching
for and developing new features for it. TIAGo com-
bines mobility, perception, manipulation and human-
robot interaction capabilities. We had developed pack-
ages with ROS and Gazebo (open-source simulator),
and after we test in a real scenario. In this year,
we could develop an initial framework to participate
in RoboCup@Home. Our future work consists in to
improve our manipulation package, and speak/image
datasets to perform more real scenarios tests.

I. INTRODUCTION

The RoboCup@Home aims to develop service and
assistive robot technology with relevance for future
personal domestic applications. The competition of
RoboCup@Home consists of tests which the robots have
to solve. Commonly, the task involves object detection
and recognition, mapping and navigation, and human
interaction [11].

II. RobôCIn TEAM

The RobôCIn is a robotic research group from
CIn/UFPE. The team was created in 2015 by stu-
dents, with the aim to apply what they learn in
computer engineering classes. Since 2016, we partici-
pated in Latin American Robotic Competition (LARC -
http://www.cbrobotica.org), on robotic soccer competi-
tion and we achieved fifth place, among 23 teams.
In the Very Small Size Soccer category [10], we devel-

oped much expertise in computer vision systems, robotic
path planning, and system control areas. The knowledge
acquired is essential to recognize and interact with its
surroundings using TIAGo. One of the new categories that
we would like to participate is @Home Category [11], on
LARC 2018, using our TIAGo - Titanium Platform, that
we have acquired in our university. This year is the first
time that we are going to participate in this category,
and we are searching for and developing new features for
TIAGo.

1Center of Informatics - CIn, Universidade Federal de Pernam-
buco, Recife, PE, Brazil, 50.740-560 Email: {chcp, hrm, lom,
mapa, rcb7, hfb, ensb}@cin.ufpe.br

III. TIAGo PAL ROBOTICS Robot

TIAGo is a service robot produced to operate in indoor
environments. It inherits all the technology and robustness
resulting from years of development and extensive use of
others robots of PAL Robotics. The company is integrat-
ing all its software in ROS, and provide comprehensive
documentation and support to help researchers to start
working with the robots and obtaining results in a short
time [2].

Fig. 1. TIAGo Robot Description

TIAGo combines mobility, perception, manipulation
and human-robot interaction capabilities. As we can see
in Fig. 1, TIAGo has an RGB-D Camera to map the
environment, a stereo microphone to capture audio, laser
range-finder to do obstacle avoidance and 3D mapping, a
differential-drive base to mobility, and 7 DoF arm with
fingers to perform manipulation. It has an autonomy of 4-
5 hours with one battery and 6-10 with two batteries, and
the charge is provided in real-time with a display LCD [3].
TIAGo arm is composed of 4x M90 Modules motors (the

firmware of the electronic boards implements control PIDs
for the position, velocity, and torque), and 1x M3D wrist



with 3 DoF (the embedded electronics provide control
PIDs for position and velocity). The modules of the arm
provide an accuracy of 0.087o. The arm modules max
speed is 100o/s. Moreover, the modules and the wrist
include self-protection mechanisms, like over-temperature
and over-voltage. The different motors of the robot can
be controlled using ROS interfaces [2]. TIAGo head has 2
DoF, so we can move up to down and left to right, and
with this, we can perform an environment scan to map the
scene. The Lifting Torso can be used to position TIAGo
in a higher or lower place to perform manipulation.

IV. THE ROBOT OPERATION SYSTEM

The Robot Operating System (ROS) is an open-source
framework with libraries and tools for writing robot soft-
ware. In Fig. 2, we can see the ROS environment. ROS
aims to simplify robot complex tasks, encouraging collab-
orative robotics software development. Using ROS, we can
build, write and run code across multiple computers [1].

Fig. 2. ROS environment: A set of tools, packages and libraries to
robot software development.

The primary goal of ROS is to support code reuse in
robotics research and development. With this in mind,
we could reuse code from others universities and improve
it with our research. This approach contributes directly
to science, where we can improve state-of-art techniques
providing improvements and new points of view, focusing
on the problem.

ROS currently runs on Unix-base platforms, in our
work, we have used ROS Indigo Distribution with Ubuntu
14.04 LTS. The Indigo Distribution is compatible with
TIAGo Pal Robotics robot.

V. GAZEBO

Gazebo is an open-source well-designed simulator that
makes possible test robot tasks solutions using realistic
scenarios. These scenarios can be model to be similar to
real-world indoor and outdoor environments [4].

It provides a robust physics engine and a graphical
interface to help the roboticist test and simulate the
environment. The PAL Robotics team provides TIAGo
simulation using ROS and Gazebo. The TIAGo simula-
tion model allows a smooth transition from simulation to
the robot. With Gazebo, we could make test algorithms
rapidly for @Home competition outside the university, for
example, in our house. In Fig. 3, we can see a TIAGo
camera view inside Gazebo.

Fig. 3. TIAGo simulation inside Gazebo.

VI. TEST DESCRIPTION

Fig. 4. Simulated map created for delivery task

VII. @HOME TASKS
A. MAPPING AND NAVIGATION
We used the gmapping package [15] for mapping and

navigation to make the robot find the location of the
packets, including the ones in a not predefined location.
This package provides laser-based SLAM (Simultaneous
Localization and Mapping). Using slam gmapping, we
could create a 2-D occupancy grid map from the laser and
pose data collected by a mobile robot.
We followed the TIAGo guide to navigate autonomously.

In this step, TIAGo uses his RGBD camera and laser to
avoid obstacles. TIAGo begins in a pre-defined position of
the world which does not correspond to the map origin.
After that, the probabilistic localization system spreads
particles all over the map. Now, we need to move TIAGo to
help the particle filter converge to the right pose estimate.
So we start the teleop [13] command to use left and right

2



arrows to guide TIAGo. With this approach, the invalid
particles are removed because the lase scan matches with
the map and the localization converge to TIAGo correct
pose. After that, we clean the cost maps as it contains
erroneous data due to a rough localization of TIAGo.
Now, the map only has the obstacles, and the system can
perform the navigation. In Figure 5, we can see the map
generated by the gmapping package after we clean the cost
map.

Fig. 5. Map generated by gmapping package with cleanned cost.

In this stage, we need to kill the teleop node and start
the autonomous navigation.

B. AUTOMAP

1) Getting the map: We started to implement and
test an automatic mapping algorithm to an closed envi-
ronment. This algorithm is implemented over gmapping
package, using the results of the cleaned costmap from
gmapping SLAM. Then we get the image of the costmap
Figure 6 calling the rosservice pal_map_manager.

Fig. 6. Raw costmap.

2) Processing the map: The process can be seen in
Figure 7, where we have 4 stages that follows: (a) We cut
out the region of valid data from the raw costmap.

Fig. 7. Stages of the automatic mapping algorithm. (a) Cutted map.
(b) Borders of the floor. (c) Extracted probable frontiers inclinations.
(d) Extracted containing rectangles.

(b) We detect and mark the borders(in red) of the un-
known region (in grey) and the floor region (in white).
(c) We infer the inclination of the border, and mark then
with blue if the slope is negative, and green if the slope
is positive (in the bottom-left corner of origin for the
coordinate system). (d) We draw the smallest rectangles
that contains the individual segments of borders that are

3



not too small(frontiers), ignoring the noise from the map.
And with it’s centroids we search for the nearest white
pixel, if not already on a white pixel, to assume that
position as a possible destination for mapping(possible
navigation points, this is repeated for all the frontiers.

3) Fiding TIAGo’s origin on the map: We assume that
the first map we get the robot will always be oriented
East on the map. And it always generates an arrow in
the map, as seen in Figure 7.c, there’s an arrow made by
and frontier of two slopes, blue and green. Then, we do a
collision test of the rectangles that contains the segments
of frontiers, and if they are of different colours we make the
righteous point of both rectangles in X axis, but with the
same postition of contact in Y axis. Because of that, we
check the possible regions of arrow convergence (as seen
in Figure 7.d) in yellow and pink filled circles, looking for
the Western possible origin, being that represented by the
yellow filled circle in Figure 7.d. And with that position of
the cutted costmap, we convert these coordinates to the
full costmap coordinates, and saving it’s global origin’s
position, for further usage in navigation points.

4) Converting frontiers into navigation points: After
we extract the frontier’s possible’s destinations for map-
ping, or the possible navigation points, we convert the
coordinates from the cutted costmap, to the full costmap
coordinates, and we make the TIAGo’s first origin (in
yellow on the first map, as seen in Figure 7.d) a translation
vector, to translate every point to TIAGo’s first position,
because the navigation system uses the first position as
the origin, then we apply the scale factor of pixels/meters
to get the final coordinates for the navigation system’s
coordinates.

5) Navigating to map the environment: We use the
service interface of move_base to send the navigation
points, using a script in python, wich send the coordinates
to the navigation service and wait for the return of the
script execution to start the process of obtaining the
navigation points.

C. DETECTION

A lot of progress has been made in computer vision
through the use of convolution neural networks (CNNs).
This kind of approach has been used in many object detec-
tors. For detection task, we decide to use a You Only Look
Once (YOLOv2) [7], That choice was based principally in
two characteristics of YOLO. First, it supports multiple
objects per image, over then 9000. Second, for the result
showed in the YoloV2 paper, this network is less likely
to provide false positives errors, And finally, it archived
better speed than others like Fast R-CNN [8], RetinaNet
[6], and SSD [5]. In Fig. 8, we can see a image passing by
YOLO architecture and it provides the object boundbox.

Fig. 8. YOLO pipeline for object detection. Image from YOLO
authors blog.

This network was trained with our dataset to provide
from both the real and simulated environments as showed
in picture 9

Fig. 9. Example of RoboCIn Dataset. In (a) ground truth of real
data, and (b) ground truth of simulated environment data.

After we have the boundbox and class of the object
in pixels with his respective class represented by (xpixels,
ypixels, idclass). This pixel position points to the object
center. For acquiring the camera’s depth the distance from
the object, a built-in function need the (xpixels, ypixels)
coordinates, and returns the distance of this pixel in
meters. Now we have (xpixels, ypixels, zmeters, idclass). The
next step is to normalized the (xpixels, ypixels) measured
using the intrinsic parameters from the camera. Finally,
TIAGo moves his head (using move head package [14]) to
minimize (xnormalized, ynormalized) distance between the
object and TIAGo’s head center, so the object is now
center with the camera image. The manipulation is done
with (xnormalized, ynormalized, zmeters, roll, pitch, yaw,
idclass).

1) DEPTH CAMERA PACKAGE: The TIAGo depth
RGBD camera (xtion) provides a roscpp node to extract
the z component, but we have done a version in rospy to
extract the z and help the community to integrate with
others python modules.

D. MANIPULATION
We used the MoveIt! ROS package [9] for picking the

packages and taking them to the delivery spots. Our
approach consists in inverse kinematics, so we realized the
planning in Cartesian space. With the MoveIt! package,

4



we could plan a joint trajectory to reach a given pose in
Cartesian space [16].

In order to realize manipulation, firstly, we need to de-
tect the delivery package. The bound box of packages and
the depth from the camera is provided by the detection
module described before. Afterwards, it is estimated the
center of the object and a group of joints from TIAGo is
choosen to get the delivery package. With the reference
frame, we send the message to MoveIt! to find a path to
the object. Once the path was found, it executes it.

E. SPEECH SYNTHESIS

We used the sound play ROS package for speech syn-
thesis. This library is the straightforward way to make
speech synthesis using ROS. The sound play package uses
the Festival Speech Synthesis System [17] that currently
only supports English and Spanish. The speech synthesis
occurs when a text is provided for our node responsible
for synthesis through a topic.

F. SPEECH RECOGNITION

For speech recognition, we used the pocket sphinx
python library. This library is a wrapper for the CMU
Sphinx base and the pocket sphinx library, for mobile
devices. The continuous recognition module returns a
list of hypothesis for the speech. The hypothesis that is
unlikely, which means that the probability of the given
phrase is below a threshold, are discarded. The probability
of each phrase is calculated using the NLTK python
library. Finally, the best hypothesis is filtered using named
entity recognition and relationship extraction. The kind of
answer is also identified in this phase, and an answer is
formulated and sent to the speech synthesis node.

The best hypothesis is the one that best fits a known
command for our robot. To identify the best hypothesis,
a knowledge base is available through the knowledge base
node. It is possible to make queries to the knowledge base
using named entities identified by the others modules and
also this one. If no hypothesis fits a known command,
a question using the named entity identified and the
relationship is sent to the speech synthesis node.

VIII. CONCLUSION

Using the methodology described in the Section VII,
we could develop an initial framework to participate of
RoboCup@Home. Our future work consists in to improve
our manipulation package, and speak/image datasets to
perform more real scenarios tests.

ACKNOWLEDGMENTS

This work was developed using the TIAGo titanium
provided by the Project of FACEPE / PRONEX - APQ-
0880-1.03/14 and the resources of the CIn-UFPE.

References
[1] Robot Operating System (ROS). Available in: http://www.ros.

org/about-ros/. Last Accessed 26 June 2018.
[2] TIAGo PAL Robotics. Available in: http://tiago.pal-robotics.

com/. Last Accessed 26 June 2018.
[3] TIAGo Robot Wiki. Available in: http://wiki.ros.org/Robots/

TIAGo. Last Accessed 26 June 2018.
[4] Gazebo Robot Simulation. Available in: http://gazebosim.org/.

Last Accessed 26 June 2018.
[5] Liu, Wei, et al. "Ssd: Single shot multibox detector." European

conference on computer vision. Springer, Cham, 2016.
[6] LIN, Tsung-Yi et al. Focal loss for dense object detection. arXiv

preprint arXiv:1708.02002, 2017.
[7] REDMON, Joseph; FARHADI, Ali. YOLO9000: better, faster,

stronger. arXiv preprint, 2017.
[8] GIRSHICK, Ross. Fast r-cnn. In: Proceedings of the IEEE inter-

national conference on computer vision. 2015. p. 1440-1448.
[9] MoveIt!. Available in: http://moveit.ros.org/. Last Accessed 15

June 2018.
[10] IEEE Very Small Size Soccer. Available in: http://www.

cbrobotica.org/?page_id=81. Last Accessed 15 June 2018.
[11] RoboCup@Home. Available in: http://www.cbrobotica.org/

?page_id=132. Last Accessed 15 June 2018.
[12] OpenCV. Available in: http://opencv.org/. Last Accessed 15

June 2018.
[13] TIAGo Teleop. Available in: http://wiki.ros.org/Robots/

TIAGo/Tutorials/motions/key_teleop/. Last Accessed 15 June
2018.

[14] TIAGo Move Head. Available in: http://wiki.ros.org/Robots/
TIAGo/Tutorials/motions/head_action/. Last Accessed 15 June
2018.

[15] TIAGo GMapping package. Available in: http://wiki.ros.org/
Robots/TIAGo/Tutorials/Navigation/Mapping/. Last Accessed
15 June 2018.

[16] Planning in cartesian space. Available in: http://wiki.ros.org/
Robots/TIAGo/Tutorials/MoveIt/Planning_cartesian_space/.
Last Accessed 15 June 2018.

[17] Speech synthesis system. Available in : http://www.cstr.ed.ac.
uk/projects/festival. Last Acessed 28 June 2018.

[18] Speech recognition library. Available in: https://github.com/
bambocher/pocketsphinx-python. Last Acessed 28 June 2018.

[19] Natural Language Toolkit. Available in: http://www.nltk.org/.
Last Acessed 28 June 2018.

5

http://www.ros.org/about-ros/
http://www.ros.org/about-ros/
http://tiago.pal-robotics.com/
http://tiago.pal-robotics.com/
http://wiki.ros.org/Robots/TIAGo
http://wiki.ros.org/Robots/TIAGo
http://gazebosim.org/
http://moveit.ros.org/
http://www.cbrobotica.org/?page_id=81
http://www.cbrobotica.org/?page_id=81
http://www.cbrobotica.org/?page_id=132
http://www.cbrobotica.org/?page_id=132
http://opencv.org/
http://wiki.ros.org/Robots/TIAGo/Tutorials/motions/key_teleop/
http://wiki.ros.org/Robots/TIAGo/Tutorials/motions/key_teleop/
http://wiki.ros.org/Robots/TIAGo/Tutorials/motions/head_action/
http://wiki.ros.org/Robots/TIAGo/Tutorials/motions/head_action/
http://wiki.ros.org/Robots/TIAGo/Tutorials/Navigation/Mapping/
http://wiki.ros.org/Robots/TIAGo/Tutorials/Navigation/Mapping/
http://wiki.ros.org/Robots/TIAGo/Tutorials/MoveIt/Planning_cartesian_space/
http://wiki.ros.org/Robots/TIAGo/Tutorials/MoveIt/Planning_cartesian_space/
http://www.cstr.ed.ac.uk/projects/festival
http://www.cstr.ed.ac.uk/projects/festival
https://github.com/bambocher/pocketsphinx-python
https://github.com/bambocher/pocketsphinx-python
http://www.nltk.org/

	INTRODUCTION
	RobôCIn TEAM
	TIAGo PAL ROBOTICS Robot
	THE ROBOT OPERATION SYSTEM
	GAZEBO
	TEST DESCRIPTION
	@HOME TASKS
	MAPPING AND NAVIGATION
	AUTOMAP
	Getting the map
	Processing the map
	Fiding TIAGo's origin on the map
	Converting frontiers into navigation points
	Navigating to map the environment

	DETECTION
	DEPTH CAMERA PACKAGE

	MANIPULATION
	SPEECH SYNTHESIS
	SPEECH RECOGNITION

	CONCLUSION
	References

